Arithmetic
You can easily perform array with array arithmetic, or scalar with array arithmetic. Let's see some examples:
import numpy as np
arr = np.arange(0,10)
# array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr + arr
# array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
arr * arr
# array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
arr - arr
# array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
# Warning on division by zero, but not an error!
# Just replaced with nan
# 잘못된 값으로 나눌때 오류를 발생시키지 않고 nan을 돌려줍니다.
arr/arr
# array([ nan, 1., 1., 1., 1., 1., 1., 1., 1., 1.])
# Also warning, but not an error instead infinity
1/arr
# array([inf, ... ,0.11111111])
arr**3
# array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
Universal Array Functions
# 제곱근
np.sqrt(arr)
# Calcualting exponential (e^)
# 지수 계산
np.exp(arr)
# 최대값
np.max(arr) # arr.max() 와 같다.
# sin, log 계산
np.sin(arr)
np.log(arr)
Great Job!
'Python > Numpy & Pandas' 카테고리의 다른 글
02-DataFrames (0) | 2020.11.30 |
---|---|
01-Introduction to Pandas, and Series (0) | 2020.11.30 |
02-NumPy Indexing and Selection (0) | 2020.11.30 |
01-NumPy Arrays (0) | 2020.11.30 |
Numpy 실행시간 비교 (0) | 2020.11.30 |